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I. INTRODUCTION

Spin liquid has been a cornerstone in the gauge-theory
approach for strongly correlated electrons1 as Fermi liquid in
the Landau-Ginzburg-Wilson framework for phase
transitions.2 An effective field theory is often given by com-
pact U�1� gauge theory,3 implying that “magnetic monopole”
excitations should be irrelevant in order to be self-consistent
for the theory. Two kinds of mechanisms have been pro-
posed, resulting from either spinon dynamics with Fermi
surface4–7 or existence of a topological term8 associated with
anomaly in the Dirac theory.9,10 After deconfinement is dem-
onstrated, an important task is to solve the noncompact U�1�
gauge theory.

A standard technique is the large-N approximation, where
the spin degeneracy of a spinon is extended from �= ↑ ,↓ to
�=1, . . . ,N. The N→� limit was believed to suppress
higher-order quantum loop corrections in the Fermi-surface
problem11 just as the case of the relativistic invariant theory.4

Recently, it was clearly demonstrated that the Fermi-surface
problem is still strongly interacting even in the large-N limit,
meaning that all planar Feynmann diagrams should be
summed as the nonabelian gauge theory with Lorentz
invariance.12

This observation suggests that dynamics of fermions
�spinons� and gauge fluctuations can be modified by more-
loops quantum corrections, that is, the exponent in the fre-
quency dependence of the spinon self-energy may have a
nontrivial correction, affecting transport properties of
spinons. Actually, the lowest-order vertex correction associ-
ated with the Aslamasov-Larkin diagram is shown to cause
such a correction proportional to 1 /N although the lowest-
order vertex correction associated with the ladder diagram
does not change the dynamics of both fermions and collec-
tive bosons.13

In this paper, we perform an infinite-order summation for
the ladder-type vertex correction and find no anomalous cor-
rection for the exponent in the frequency dependence of the
fermion self-energy. In other words, dynamics of both
spinons and gauge bosons remains the same as the case with-
out vertex corrections.14 We prove this result based on the
Ward identity,15 asymptotically exact in the low-energy limit.

II. BEYOND THE ELIASHBERG FRAMEWORK

A. Review on the Eliashberg theory

We start from an effective U�1� gauge theory with one
patch in one time and two space dimensions,12

L = f�
†���� − i�x − �y

2�f� +
e

�N
af�

† f� + a�− �y
2�z−1/2a , �1�

where f� and a represent fermionic spinons and U�1� gauge
fluctuations, respectively, emerging in the U�1� spin-liquid
state.1 e is an internal gauge charge of a spinon and N is the
spin degeneracy. � is an infinitesimal coefficient to control
artificial divergences in quantum corrections, which can be
cured by self-energy corrections.12 z is the dynamical expo-
nent determining the dispersion relation of gauge fluctua-
tions. It is given by z=3 for several problems such as ferro-
magnetic or nematic quantum criticality including the
present spin-liquid problem11 while z=2 in the spin-density
wave ordering.16 Both the Fermi velocity vF and the curva-
ture 1 /m are set to one.

It was shown that either scattering with small momentum
transfer or that with 2kF �twice of the Fermi momentum� is
relevant in the Fermi-surface problem.2,5 In the one-patch
approximation12 only forward scattering, identified with g4 in
the g-ology of the one-dimensional problem,17 is taken into
account while another forward scattering �g2� and back-
scattering �g1� are neglected. Such scattering channels can be
introduced in the two-patch approximation.13

The previous large-N analysis without vertex corrections
coincides with the Eliashberg approximation,11 introducing
only self-energy corrections,

��q0,q� =
e2

N
� dk0

2�
� d2k

�2��2G��k0 + q0,k + q�G��k0,k�

= �b

�q0�
�qy�

,

	�k0� = −
e2

N
� dq0

2�
� d2q

�2��2G��k0 + q0,k + q�D�q0,q�

= − i

b

N
sgn�k0��k0�2/z, �2�

where the spinon Green’s function and gauge propagator are
given by

G��k0,k� =
1

i�k0 + kx + ky
2 − 	�k0�

,
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D�q0,q� =
1

�qy�z−1 + ��q0,q�
, �3�

respectively. The main point is that dynamics of gauge fluc-
tuations is given by the Landau damping term with the
damping coefficient �b proportional to kF

−1, resulting from
Fermi-surface fluctuations while spinon dynamics shows
non-Fermi-liquid dependence in frequency of its self-energy,
given by 2 /z with a constant 
b.

The problem to address in this paper is whether the
anomalous exponent 2 /z will be modified or not when vertex
corrections are taken into account in a nonperturbative way,
i.e., up to an infinite order. It turns out that the gauge dynam-
ics cannot be modified from the Landau damping dynamics
in the one-patch approximation while the fermion dynamics
is expected to have some corrections.12 Even in the two-
patch approximation, the gauge dynamics is still unchanged
while fermions were shown to have 1 /N modification for the
frequency exponent in the perturbative approach based on
the Eliashberg solution.13

B. Self-consistent ladder approximation

We introduce vertex corrections in a completely nonper-
turbative way based on the ladder approximation. Then, we
obtain full self-consistent equations,

��q0,q� =
e2

N
� dk0

2�
� d2k

�2��2��k0 + q0,k + q;k0,k�

�G��k0 + q0,k + q�G��k0,k� ,

	�k0� = −
e2

N
� dq0

2�
� d2q

�2��2��k0 + q0,k + q;k0,k�

�G��k0 + q0,k + q�D�q0,q� , �4�

where ��k0+q0 ,k+q ;k0 ,k� is the vertex function given by

��k0 + q0,k + q;k0,k� = 1 −
e2

N
� dl0

2�
� d2l

�2��2��k0 + q0 − l0,k

+ q − l;k0 − l0,k − l�D�l0,l�G��k0 + q0

− l0,k + q − l�G��k0 − l0,k − l� �5�

in the ladder approximation. Figure 1 represents Eq. �4� and
Fig. 2 displays Eq. �5�.

In order to solve these three coupled integral equations,
we consider the Ward identity,17

i�q0ℸ�k0 + q0,k + q;k0,k� + qx��k0 + q0,k + q;k0,k�

+ qy��k0 + q0,k + q;k0,k�

= G�
−1�k0 + q0,k + q� − G�

−1�k0,k� , �6�

where ℸ�k0+q0 ,k+q ;k0 ,k� is the scalar vertex while ��k0
+q0 ,k+q ;k0 ,k� and ��k0+q0 ,k+q ;k0 ,k� are vector vertices.
There is a special relation between the scalar vertex and vec-
tor one in one dimension due to the kinematic constraint, that
is, the vector vertex is proportional to the scalar vertex with
the Fermi velocity.17 This is the reason why the one-
dimensional problem is exactly solvable. On the other hand,

such a relation does not exist above one dimension, thus it is
necessary to propose an ansatz for such a relation.

We suggests the following relation:

ℸ�k0 + q0,k + q;k0,k� → ��k0 + q0,k + q;k0,k� ,

��k0 + q0,k + q;k0,k� → �2ky + qy���k0 + q0,k + q;k0,k� ,

�7�

where the first ansatz is the application of the one-
dimensional result while the second one is our main assump-
tion. As a result, the vertex function is

��k0 + q0,k + q;k0,k� =
G�

−1�k0 + q0,k + q� − G�
−1�k0,k�

g�
−1�k0 + q0,k + q� − g�

−1�k0,k�
,

�8�

where g�
−1�k0 ,k�= i�k0+kx+ky

2 is a noninteracting Green’s
function. We note that this expression recovers both nonin-
teracting and one-dimensional cases. In Appendix A, we
show that this ansatz is self-consistent for the vertex equation
�Eq. �5�� in the low-energy limit.

It is educational to check that if we apply the well-known
one-dimensional ansatz for the vertex function, i.e., neglect-
ing ��k0+q0 ,k+q ;k0 ,k�, given by

=

Σ (k) =

(q)Π
k

q

k+q

k+q

FIG. 1. Fermion self-energy 	�k� and boson self-energy ��q�,
where the thick line represents the fermion Green’s function and the
wavy line does the gauge propagator. The shaded region can be any
renormalized vertex.
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FIG. 2. The ladder vertex correction turns out to be irrelevant in
the Eliashberg solution.
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��k0 + q0,k + q;k0,k� �
G�

−1�k0 + q0,k + q� − G�
−1�k0,k�

i�q0 + qx
,

we find that the Landau damping dynamics for gauge fluc-
tuations is not reproduced as follows:

��q0,q� =
e2

N

1

iq0 + qx
� dk0

2�
� d2k

�2��2 �G��k0,k�

− G��k0 + q0,k + q��

 e2 i�q0�
i�q0 + qx

.

This implies that the one-dimensional Ward identity cannot
be applied to higher-dimensional cases.

Inserting the vertex function Eq. �8� into the equation for
the polarization function in Eq. �4�, we find that the Landau
damping dynamics does not change as follows:

��q0,q� =
e2

N
� dk0

2�
� d2k

�2��2

G��k0,k� − G��k0 + q0,k + q�
i�q0 + qx + 2kyqy + qy

2

=
ie2

2
� dk0

2�
� dky

2�

sgn�k0 + q0� − sgn�k0�
i�q0 + qx + 2kyqy + qy

2

=
e2

8
� dk0

2�

sgn�q0��sgn�k0 + q0� − sgn�k0��
�qy�

= �
�q0�
�qy�

, �9�

where � is a modified damping coefficient.
Inserting both the vertex function �Eq. �8�� and boson

self-energy �Eq. �9�� into the equation for the fermion self-
energy in Eq. �4�, we obtain two sectors,

	�k0� = −
e2

N
� dq0

2�
� d2q

�2��2G��k0 + q0,k + q�D�q0,q�

�
G�

−1�k0 + q0,k + q� − G�
−1�k0,k�

i�q0 + qx + 2kyqy + qy
2

	 	1�k0� + 	2�k0� . �10�

The first part denoted by 	1�k0� turns out to vanish,

	1�k0� =
ie2

2N
� dq0

2�
� dqy

2�

sgn�q0�

�
�q0�
�qy�

+ �qy�z−1

= 0. �11�

On the other hand, the second part recovers exactly the same
expression as Eq. �2� in the low-energy limit,

	2�k0� = 	�k0� = − i



N
sgn�k0��k0�2/z, �12�

where 
 is a modified constant. We show the derivation of
this result in Appendix B.

C. Discussion

An essential point is that the ladder-vertex equation �Eq.
�5�� is solved, resorting to the Ward identity, where the an-

satz for the relationship between the scalar and vector verti-
ces �Eq. �7�� is introduced to result in the relationship be-
tween the vertex function and fermion Green’s function �Eq.
�8��. Justification for Eq. �8� lies in the fact that the boson
self-energy should be given by the Landau damping solution.
In the one-patch formulation, higher-order quantum correc-
tions are shown to vanish identically because all poles in the
integral expression are in the same half plane, implying that
the Landau damping solution is exact.12 Considering the
structure of the boson self-energy with the ladder-vertex cor-
rection �Eq. �9��, Eq. �8� seems to be generic. In addition, Eq.
�8� recovers not only the noninteracting case but also the
one-dimensional physics completely. The relationship be-
tween Eqs. �7� and �8� is unique as far as the y-current vertex
is linearly related with the x-current or scalar vertex.

Can we use the Ward identity in this approximation
scheme? Usually speaking, the Ward identity is on the rela-
tionship between full vertex corrections and corresponding
Green’s functions. Actually, the Ward identity and the special
relation between the vector and scalar vertices in one dimen-
sion are satisfied for the fully renormalized vertex. In fact,
the Ward identity should be always satisfied in any approxi-
mation scheme because it guarantees conservation of the sys-
tem. In this sense, the Ward identity may be regarded as
another phrase of the conserving approximation. Mathemati-
cally speaking, the conserving approximation can be derived
from the Luttinger-Ward functional approach, where fully
self-consistent sets of equations derived from the Luttinger-
Ward functional respect the Ward identity automatically.18,19

Of course, this is not exact. A good example can be found in
the impurity problem, called the conserving self-consistent
t-matrix approximation �CTMA�.20

Another important assumption is that singular dependence
of the fermion self-energy occurs from frequency instead of
momentum. Though this is a common result within the
Eliashberg approximation,11 there is no reason a priori, for
this assumption to remain valid as soon as ladder-type vertex
corrections are included. In particular, the self-consistent cal-
culations performed in the appendices are carried out within
this assumption, which greatly simplifies the computations. It
was argued that the fermion self-energy has the same fre-
quency dependence as the Eliashberg solution and there is no
singular momentum dependence in the perturbative evalua-
tion of the one patch formulation up to an infinite order
based on the Eliashberg solution,12,14 implying no anomalous
exponent for the fermion Green’s function, although one can-
not remove the possibility that the summation for coeffi-
cients from higher-order quantum corrections may be singu-
lar. In addition, ladder-type vertex corrections turn out not to
change the Elaishberg solution in the perturbative calculation
of the two-patch formulation up to the lowest order.13 In this
respect, our result is not surprising but expected from the
perturbative analysis in both one-patch12 and two-patch13

formulations.
However, special types of quantum corrections involved

with 2kF momentum transfer were shown to cause the singu-
lar momentum dependence for the fermion self-energy in the
two-patch formulation, giving rise to an anomalous exponent
for the fermion Green’s function.13 Unfortunately, these
quantum processes are not introduced in the ladder approxi-
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mation, given by the Aslamasov-Larkin diagrams. This leads
us to consider the Aslamasov-Larkin vertex up to an infinite
order, shown in Fig. 3. Frankly speaking, this consideration
is not completely new, already investigated in the context of
the superconducting instability although it corresponds to the
particle-particle channel.21 An interesting point is that such
vertices are singularly enhanced in the U�1� spin-liquid state,
causing anomalous critical exponents according to the per-
turbative evaluation. There is another Aslamasov-Larkin ver-
tex correction in the particle-particle channel associated with
superconductivity, competing with the 2kF particle-hole in-
stability. One problem in this consideration is to construct the
self-consistent conserving approximation, not addressed
clearly as far as we know. When this self-consistent conserv-
ing framework is settled, we can check whether the vertex
function �Eq. �8�� from the Ward identity allows the self-
consistent solution with new critical exponents or not. If it
works, we have a powerful framework.

This discussion reminds us of the conserving CTMA for
the single-impurity problem,20 introduced to overcome the
failure of the noncrossing approximation �NCA� in the ex-
actly screened case, i.e., the absence of the strong-coupling
fixed point below the Kondo temperature. Here, the NCA is
analogous to the Eliashberg approximation while the CTMA
is parallel with the self-consistent 2kF treatment. Although
the CTMA does not change the critical exponents of the
NCA in the overscreened case, it cures several problems as-
sociated with thermodynamics.20 In the present situation, the
self-consistent 2kF treatment may change the critical expo-
nents of the Eliashberg approximation. It will be really inter-
esting to investigate this type of diagrams near future.

III. SUMMARY

In this study, we solved three coupled integral equations
for boson and fermion self-energies with vertex corrections.
The key point is to make an ansatz for the vertex function in
terms of the fermion Green’s function based on the Ward
identity. Resorting to this ansatz, we find a set of full self-
consistent solutions in the ladder approximation for the ver-

tex correction, where both boson and fermion self-energy
corrections do not have any modification, compared with the
Eliashberg approximation. This implies that if the anomalous
exponent arises in the fermion self-energy, it may result from
the class of Aslamasov-Larkin diagrams, not taken into ac-
count in our study. This remains as an important future work.
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APPENDIX A: SELF-CONSISTENCY BETWEEN THE
WARD IDENTITY AND THE LADDER APPROXIMATION

FOR THE VERTEX FUNCTION IN THE LOW-
ENERGY LIMIT

In this appendix, we show that the ladder vertex in Eq. �5�
satisfies the Ward identity with the ansatz Eq. �8�. In other
words, the ansatz Eq. �8� is shown to be self-consistent at
least in the ladder approximation.

Inserting Eq. �8� into the right-hand side �R.H.S.� in Eq.
�5�, we obtain

R.H.S. − 1 = −
e2

N
� dl0

2�
� d2l

�2��2D�l0,l�

�
G��k0 − l0,k − l� − G��k0 + q0 − l0,k + q − l�
g�

−1�k0 + q0 − l0,k + q − l� − g�
−1�k0 − l0,k − l�

.

�A1�

Performing the lx integration, we obtain

R.H.S. − 1 =
ie2

2N
�

−�

� dl0

2�
�

−�

� dly

2�

1

�
�l0�
�ly�

+ �ly�z−1

�
sgn�k0 − l0� − sgn�k0 + q0 − l0�
i�q0 + qx + 2�ky − ly�qy + qy

2 . �A2�

Integrating over the frequency l0, we obtain

R.H.S. − 1 =
ie2

4��N
�

0

� dly

2�

1

2qy

ln���k0 + q0� + ly

z�
− ln���k0� + ly

z� �
�� − i�q0 − qx − 2kyqy − qy

2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2 	 A + B .

�A3�

The first ln contribution can be approximated as follows:

(k+q,k;q)Λ =

=

k+q

kq

+

kk−l

k+qk+q−l

k+q−l

k−l

FIG. 3. The Aslamasov-Larkin vertex correction in the particle-
hole channel, where 2kF momentum transfer gives rise to an
anomalous critical exponent for the fermion propagator. This situa-
tion is quite analogous to the superconducting instability. Actually,
there is another Aslamasov-Larkin vertex correction in the particle-
particle channel, competing with the 2kF particle-hole instability.
Inserting these Aslamasov-Larkin vertex corrections into the shaded
regions of Fig. 1, one can construct self-consistent equations for
fermion and boson self-energies.
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A �
ie2

4��N
�

0

���k0 + q0��1/z dly

2�

1

2qy
�ln���k0 + q0���

�� − i�q0 − qx − 2kyqy − qy
2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2

+
ie2

4��N
�

���k0 + q0��1/z

� dly

2�

1

2qy
�ln ly

z�

�� − i�q0 − qx − 2kyqy − qy
2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2 . �A4�

Expanding the first sector in ly, we obtain

A �
ie2

4��N
�

0

���k0 + q0��1/z dly

2�

��ln���k0 + q0���
2ly

i�q0 + qx + 2kyqy + qy
2

+
ie2

4��N
�

���k0 + q0��1/z

� dly

2�

1

2qy
�ln ly

z�

�� − i�q0 − qx − 2kyqy − qy
2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2 . �A5�

One will realize that the first term is associated with the
self-energy in the Eliashberg approximation. Evaluating the
B term in the same way as A and gathering both A and B, we
reach the final expression

��k0 + q0,k + q;k0,k� − 1 = A + B

= −
	�k0 + q0� − 	�k0�

g�
−1�k0 + q0,k + q� − g�

−1�k0,k�

+ F�k0 + q0,k + q;k0,k� , �A6�

where

F�k0 + q0,k + q;k0,k� 	
ie2

4��N
�

���k0 + q0��1/z

� dly

2�

1

2qy
�ln ly

z�

�� − i�q0 − qx − 2kyqy − qy
2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2

−
ie2

4��N
�

���k0��1/z

� dly

2�

1

2qy
�ln ly

z�

�� − i�q0 − qx − 2kyqy − qy
2

i�q0 + qx + 2�ky + ly�qy + qy
2

+
i�q0 + qx + 2kyqy + qy

2

i�q0 + qx + 2�ky − ly�qy + qy
2 .

�A7�

It is not difficult to observe that F�k0+q0 ,k+q ;k0 ,k� is irrel-
evant in the low-energy limit due to the frequency and mo-
mentum dependence in the numerator, giving rise to higher-
order corrections to the fermion self-energy. We conclude
that Eq. �8� is asymptotically correct in the low-energy limit.

APPENDIX B: EVALUATION OF �2(k0)

In this appendix, we evaluate 	2�k0�. Performing momen-
tum and frequency integrals, we obtain

	2�k0� =
e2

N
� dq0

2�
� d2q

�2��2

1

i�q0 + qx + 2kyqy + qy
2

i�k0 + kx + ky
2 − 	�k0�

i��k0 + q0� + �kx + qx� + �ky + qy�2 − 	�k0 + q0�
1

�
�q0�
�qy�

+ �qy�z−1

=
e2

N
� dq0

2�
� dqy

2�
� dqx

2�
� 1

�
�q0�
�qy�

+ �qy�z−1

i�k0 + kx + ky
2 − 	�k0�

i�k0 + kx + ky
2 − 	�k0 + q0�

�
 1

�i�q0 + qx + 2kyqy + qy
2�

−
1

i��k0 + q0� + �kx + qx� + �ky + qy�2 − 	�k0 + q0��
= −

ie2

2��1−2/zN
�0

�

dy
y

1 + yz�� dq0

2�

i�k0 + kx + ky
2 − 	�k0�

i�k0 + kx + ky
2 − 	�k0 + q0�

sgn�q0� − sgn�k0 + q0�
q0

1−2/z � − i



N
sgn�k0��k0�2/z. �B1�

The vertex correction does not change the scaling for frequency in the ladder approximation.
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